Y-sektionens studienämnd är ansvariga för att informationen på guiden är aktuell. Om du hittar någonting som inte stämmer kan du mejla SNY.

Budgetår


Institution

IFM

Examinator

Ferenc Tasnadi

Schemablock

Halvtermin

HT1: block3
HT2: block3

Huvudområden

Teknisk fysik
Fysik

Nivå

A1X

Tidsfördelning

6,0HP
Schemalagd tid: 40 timmar
Självstudietid: 120 timmar

SNY har ordet

OBS! Kursen gavs sista gången HT2020.

Kursutvärderingar

Logga in för att läsa kursutväderingar

Innehåll

Kursen inleds med en genomgång av Maxwells fältekvationer samt införande av potentialfunktioner. Maxwells ekvationer ges på differentialform och Fourier-transformer används i stor utsträckning. Flera olika, kompletterande, lösningsmetoder till Laplaces och Poissons ekvationer används: Variabelseparation; konform avbildning; egenskaperna hos analytiska funktioner; spegelladdningsmetoden. Multipolutveckling av potentialerna gås igenom. Kursens fortsättning kan sedan delas upp i de två områdena generering av elektromagnetisk strålning och elektromagnetiska vågors utbredning. I den första av dessa två delar gås accelererade laddningars potentialfält igenom, sk. Lienard-Wichert potentialer och en hel del om antennteori. Hur fält genereras i praktiska tillämpningar som i t.ex. mikrovågsugnen tas upp. Vågutbredning studeras i olika material och vid gränsytor, speciellt vid metallytor. Effekten av att dielektricitetsfunktion inte är en konstant, utan en frekvens- och våglängds-beroende funktion, diskuteras och hur lösningarna till Maxwells ekvationer ser ut i olika typer av material. Begreppet elektromagnetisk egenmod introduceras. Med hjälp av dessa egenmoder beräknas van-der-Waals- och Casimir-krafter mellan föremål. För att anknyta till den aktuella forskningsfronten görs en detaljerad beräkning på Grafen. Slutligen behandlas relativistisk elektrodynamik, 4-vektorer och elektromagnetiska fälttensorn.

Mål

Kursen avser att ge en god kännedom om Maxwells ekvationer, lösningsmetoder samt olika typer av elektromagnetiska system, som både är principiellt intressanta och har sina användningsområden i tekniska sammanhang. Studenten får god användning av avancerade kurser i matematik som t.ex. komplex analys. Studenten förväntas få en mycket djup förståelse av elektromagnetism och bli väl förberedd för eventuella högre studier. Lärandemålet för studenterna är att kunna lösa mer avancerade problem inom elektromagnetism. Några exempel är:

  • att med hjälp av Maxwells ekvationer på differentialform kunna lösa problem inom elektromagnetism;
  • att med hjälp av andra grundläggande, empiriska samband som t.ex. Biot Savarts lag eller den generaliserade Coulombs lag kunna bestämma de resulterande fälten utifrån givna laddnings- eller strömtätheter;
  • att kunna använda sig av symmetriegenskaper hos det givna problemet för att förenkla beräkningarna;
  • att på rätt sätt kunna hantera materialparametrar som modifierar fälten inuti material jämfört med i vakuum.

Examinationsmoment

TENA - 6,0 HP
Inlämningsuppgifter/Skriftlig tentamen (U, 3, 4, 5)
UPG1 - 0,0 HP
Frivilliga inlämningsuppgifter under kursens gång (U, G)

Organisation

Storseminarier med blandade teorigenomgångar och räkneövningar.

Litteratur

David J. Griffiths, Introduction to Electrodynamics, Addison-Wesley.

Rekommenderade förkunskaper

Elektromagnetism
TFYA13 - 8,0 HP - VT2 block2
Flervariabelanalys
TATA43 - 8,0 HP - VT2 block2
Fourieranalys
TATA77 - 6,0 HP - HT1 block1
Komplex analys
TATA45 - 6,0 HP - HT2 block1
Vektoranalys
TATA44 - 4,0 HP - HT1 block1

Kommentarer

Logga in för att kunna läsa och skriva kommentarer.