Y-sektionens studienämnd är ansvariga för att informationen på guiden är aktuell. Om du hittar någonting som inte stämmer kan du mejla SNY.

Budgetår


Institution

ISY

Examinator

Michael Felsberg

Schemablock

Halvtermin

VT1: block 1

Huvudområden

Elektroteknik
Datateknik

Nivå

A1X

Tidsfördelning

6,0HP
Schemalagd tid: 100 timmar
Självstudietid: 60 timmar

SNY har ordet

Det finns inga aktuella kommentarer för kursen. Om du har läst kursen får du gärna kontakta SNY med en kommentar för att förbättra kommande upplagor av Y-arens guide till galaxen.

Innehåll

I kursen tar vi upp metodik som relaterar till målen ovan, med fokus på följande:

  • Lokala särdrag och strukturtensor
  • Rörelseskattning och optiskt flöde
  • Klustring och bakgrundsmodellering
  • Följning av regioner och objekt
  • Diskriminativa korrelationsfilter
  • Kameraövervakning och dess etiska/samhällsaspekter 

Innehållet introduceras under en serie föreläsningar, och används sedan praktiskt i laborationer och projekt.

Mål

Kursen ger kunskap om de algoritmer och skattningsproblem som används för att extrahera information från video eller bildsekvenser. Detta innefattar dels den matematik som används, dels hur den i praktiken omsätts i algoritmer genom programmering. 


Studenten ska efter genomgången kurs kunna:

Mål 1: redogöra för, och använda algoritmer för följning av region i bildsekvenser

Mål 2 : redogöra för, och använda algoritmer för skattning av optiskt flöde

Mål 3: redogöra för, och integrera komponenter för objektföljning i bildsekvenser

Mål 4: redogöra för, och integrera komponenter för felsökning, visualisering och prestandaanalys

Examinationsmoment

PRA2 - 3,0 HP
Projektarbete i grupp (U, 3, 4, 5)
LAB1 - 3,0 HP
Laborationer (U, 3, 4, 5)

Examination

 

Närvaro är obligatorisk på de projektförberedande laborationerna, samt vid redovisning av projektet och den föreläsning då projektet startar.

Mål 1-2 testas under laborationerna och Mål 3-4 testas under projektet.

För betyg 3 krävs godkänt på projekt och laborationer. Demonstrerad högre förmåga på projekt eller laborationer att redogöra för och använda metoder, ger betyg 4, demonstrerad högre förmåga på både projekt och laborationer att redogöra för och använda metoder, ger betyg 5.

Betyg på delmoment/modul beslutas i enlighet med de bedömningskriterier som presenteras vid kursstart.

Organisation

Kursen består av en föreläsningsserie, lektioner, två laborationer, samt ett större projekt som utförs i grupp. Laborationerna introducerar nyckelkomponenter i projektet och kräver programmering.

Litteratur

Böcker

  • Michael Felsberg, (2022) Advanced Methods and Deep Learning in Computer Vision Academic Press
    kapitlet finns elektroniskt utan kostnad
  • Richard Szeliski, (2022) Computer Vision: Algorithms and Applications 2 Springer

Övrigt

  • Utvalda forskningsartiklar som anges på kurshemsidan.

Relaterade profiler

Signal- och bildbehandling
SBB - ISY

Kommentarer

Logga in för att kunna läsa och skriva kommentarer.