Budgetår
Institution
ISYExaminator
Michael FelsbergSchemablock
HalvterminVT1: block 1
Huvudområden
ElektroteknikDatateknik
Nivå
A1XTidsfördelning
6,0HPSchemalagd tid: 100 timmar
Självstudietid: 60 timmar
SNY har ordet
Det finns inga aktuella kommentarer för kursen. Om du har läst kursen får du gärna kontakta SNY med en kommentar för att förbättra kommande upplagor av Y-arens guide till galaxen.Innehåll
I kursen tar vi upp metodik som relaterar till målen ovan, med fokus på följande:
- Lokala särdrag och strukturtensor
- Rörelseskattning och optiskt flöde
- Klustring och bakgrundsmodellering
- Följning av regioner och objekt
- Diskriminativa korrelationsfilter
- Kameraövervakning och dess etiska/samhällsaspekter
Innehållet introduceras under en serie föreläsningar, och används sedan praktiskt i laborationer och projekt.
Mål
Kursen ger kunskap om de algoritmer och skattningsproblem som används för att extrahera information från video eller bildsekvenser. Detta innefattar dels den matematik som används, dels hur den i praktiken omsätts i algoritmer genom programmering.
Studenten ska efter genomgången kurs kunna:
Mål 1: redogöra för, och använda algoritmer för följning av region i bildsekvenser
Mål 2 : redogöra för, och använda algoritmer för skattning av optiskt flöde
Mål 3: redogöra för, och integrera komponenter för objektföljning i bildsekvenser
Mål 4: redogöra för, och integrera komponenter för felsökning, visualisering och prestandaanalys
Examinationsmoment
PRA2 - 3,0 HPProjektarbete i grupp (U, 3, 4, 5)
LAB1 - 3,0 HP
Laborationer (U, 3, 4, 5)
Examination
Närvaro är obligatorisk på de projektförberedande laborationerna, samt vid redovisning av projektet och den föreläsning då projektet startar.
Mål 1-2 testas under laborationerna och Mål 3-4 testas under projektet.
För betyg 3 krävs godkänt på projekt och laborationer. Demonstrerad högre förmåga på projekt eller laborationer att redogöra för och använda metoder, ger betyg 4, demonstrerad högre förmåga på både projekt och laborationer att redogöra för och använda metoder, ger betyg 5.
Betyg på delmoment/modul beslutas i enlighet med de bedömningskriterier som presenteras vid kursstart.
Organisation
Kursen består av en föreläsningsserie, lektioner, två laborationer, samt ett större projekt som utförs i grupp. Laborationerna introducerar nyckelkomponenter i projektet och kräver programmering.
Litteratur
Böcker
- Michael Felsberg, (2022) Advanced Methods and Deep Learning in Computer Vision Academic Press
kapitlet finns elektroniskt utan kostnad - Richard Szeliski, (2022) Computer Vision: Algorithms and Applications 2 Springer
Övrigt
Utvalda forskningsartiklar som anges på kurshemsidan.
Relaterade profiler
Signal- och bildbehandling
SBB - ISY |
Kommentarer
Logga in för att kunna läsa och skriva kommentarer. |