Y-sektionens studienämnd är ansvariga för att informationen på guiden är aktuell. Om du hittar någonting som inte stämmer kan du mejla SNY.

Budgetår


Institution

MAI

Examinator

Jan Snellman

Schemablock

Heltermin

HT1: block 3
HT2: block 3

Huvudområden

Matematik
Tillämpad matematik

Nivå

G2

Tidsfördelning

6,0HP
Schemalagd tid: 36 timmar
Självstudietid: 124 timmar

Språk

Svenska/Engelska

Länkar

Kurshemsida

SNY har ordet

I den här kursen är substansen konkret, det är metoden som är abstrakt. Man arbetar med algebraiska strukturer såsom ringar, kroppar och grupper, strukturbevarande avbildningar mellan dessa och abstrakta konstruktioner såsom kvot, summa och snitt. Tillämpningarna utanför matematikens domäner har med åren blivit flera. Exempel är kodning, kryptering, snabb aritmetik, snabba transformer och symbolisk integration.

Innehåll

Grupper, undergrupper, begreppet ordning, ringar, spec. PID, ideal, ringhomomorfismer, kroppar, utvidgningskroppar, ändliga kroppar, kinesiska restsatsen.

Mål

Kursen skall ge grundläggande kunskaper och färdighet om begrepp och metoder i abstrakt algebra, och dess tillämpningar speciellt inom datavetenskap. Speciellt skall man efter kursens slut
  • Kunna använda kinseiska restsatsen för att lösa system av kongruenser, och känna till satsens generalisering till kommutativa ringar
  • Kunna använda Burnsides formel för att lösa kombinatoriska problem rörande gruppverkan
  • Kunna räkna med permutationer och permutationsgrupp. Speciellt kunna sönderlägga en permutation som en produkt av disjunkta cykler
  • Kunna redogöra för, och bevisa, Lagranges och Cayleys satser inom den elementära gruppteorin
  • Kunna den grundläggande teorin för ändliga kroppar
  • Kunna beräkna splittringskroppen till ett polynom (av lågt gradtal)
  • Känna till fundamentalsatsen för ändliga abelska grupper
  • Känna till gradtalssatsen och primitiva elementsatsen från teorin om kroppsutvidgningar

Examinationsmoment

UPG2 - 6,0 HP
Inlämningsuppgifter (U,3,4,5)

Organisation

Föreläsningar och jourtid.
Kursen pågår hela höstterminen.

Litteratur

T. Judson: Abstract Algebra, Theory and Applications, Lolab ("on demand") eller P-A.Svensson: Abstract Algebra, Studentlitteratur.

Relaterade profiler

Teknisk matematik
TMT - MAI

Rekommenderade förkunskaper

Grundläggande diskret matematik

Diskret matematik
TATA32 - 8,0 HP - HT1 block 2, HT2 block 3
Linjär algebra
TATA24 - 8,0 HP - HT1 block 1, HT2 block 4 | HT1 block 4, HT2 block 4

Kommentarer

Logga in för att kunna läsa och skriva kommentarer.