Budgetår
Institution
ISYExaminator
Claudio AltafiniSchemablock
HalvterminHT1: block 3
Huvudområden
ElektroteknikNivå
A1XTidsfördelning
6,0HPSchemalagd tid: 58 timmar
Självstudietid: 102 timmar
SNY har ordet
Denna kurs ersätts med TSRT92 från och med HT20. Modeller och simulering blir allt viktigare i industrin. Det hänger förstås ihop med att beräkningskapa- citeten i datorerna har ökat, och att det i allmänhet kan vara billigare att simulera ett system än att använda ett riktigt. Det kan till exempel handla om att hitta en optimal reglering, träna operatörer eller att göra beräkningar på ett system som ännu inte är färdigt. I grundkursen i reglerteknik var oftast systemen redan givna som modeller i form av en överföringsfunktion eller på tillståndsform. Den här kursen handlar om att ta fram dessa modeller, något som i kursen angrips från två olika håll (med bland annat varsin laboration): Fysikaliskt modellbygge respektive identifiering. Modellerna som tas fram kan sedan användas för exempelvis reglerdesign, diagnos och övervakning, signalbehandling, prediktion (t ex väderleksprognoser) och vid simuleringar av olika slag. I det fysikaliska modellbygget utgår man från fysikaliska samband (t ex mekanik eller elektronik). Ett nytt verktyg som in- troduceras här är bindningsgrafer och differentialalgebraiska ekvationer (DAE), som simuleringsspråket Modelica bygger på. I identifieringen utgår man istället från insignal-utsignalbeteendet hos systemet, och ställer sig frågan hur systemet däre- mellan skulle kunna vara uppbyggt för att kunna ge just det här beteendet. Ett viktigt hjälpmedel här är System Identifi- cation Toolbox i Matlab.Kursutvärderingar
Logga in för att läsa kursutväderingar |
Innehåll
Modeller och modellbygge: Olika modelltyper. Tidskontinuerliga och tidsdiskreta modeller. Differential- och differensekvationer. Tillståndsbeskrivning. Principer för modellbygge med utgångspunkt från fysikaliska samband. Balans- och jämviktsekvationer. Modellförenkling. Analogier mellan olika fysikaliska domäner. Bindningsgrafer. Differentialalgebraiska (DAE-) modeller. Objektorienterat modellbygge. Modeller med störningar. Blackboxmodeller.
Identifiering: Frekvens och transientanalys. Korrelations- och spektralanalys. Parameterskattning i linjära och olinjära dynamiska modeller. Systemidentifiering som modellbyggesverktyg. Modellvalidering.
Simulering: Metoder för tillståndsmodeller och DAE-modeller. Noggrannhet och stabilitet. Simuleringsspråken Simulink och Modelica.
Mål
Kursen skall ge kunskaper om metoder och principer att bygga matematiska modeller för dynamiska system (dvs system som beskrivs med hjälp av differential och/eller differensekvationer). Kursen skall också ge kunskaper om hur modellernas egenskaper studeras genom simulering. Vidare skall betydelsen av dynamiken hos processer och begränsningen i statiska betraktelser betonas. Efter avslutad kurs förväntas studenten kunna:
- Definiera, beskriva och tillämpa grundläggande begrepp relaterade till modeller, identifiering och simulering.
- Förenkla en given modell genom användande av statiska samband, ersättning av variabler med konstanter, försummande av små effekter/idealiseringar och aggregering av tillstånd.
- Använda skalning och dimensionslösa variabler för att förenkla analys av system.
- Utifrån balans- och jämviktsekvationer och andra fysikaliska samband modellera enklare mekaniska (i en dimension), elektriska, flödes- och termiska system, och kombinationer av dessa, på DAE- och (om möjligt) tillståndsform.
- Ställa upp bindningsgrafer för tillämpliga system ur ovan nämnda klass, förenkla och analysera bindningsgrafen m a p kausalitetskonflikter, samt ur en given konfliktfri bindningsgraf ta fram en tillståndsmodell.
- Beräkna index för en given DAE och beskriva de olika standardformerna för linjära DAE:er.
- Modellera och simulera enklare mekaniska (i en dimension) och elektriska system i Simulink och Modelica, samt skriva enkla Modelicaobjekt i kodform.
- Identifiera en modell för ett verkligt system genom lämpligt val av experimentdesign, efterbehandling av data, modellstruktur och utförlig validering.
- Beräkna asymptotiska bias- och variansegenskaper för ett givet linjärt identifieringsproblem.
- Beskriva skräddarsydda olinjära modeller, lokala modeller, lokala linjära modeller och olinjära regressionsmodeller (speciellt neuronnät), och skatta modeller av dessa typer i mycket enkla fall.
- Avgöra om en given simuleringsmetod är implicit eller explicit och vilket antal steg den har, samt beräkna lokala felet och stabilitetsområdet för enkla simuleringsmetoder.
- Skriva en form- och innehållsmässigt god laborationsrapport.
Examinationsmoment
DAT1 - 4,5 HPDatortenta (U,3,4,5)
LAB1 - 1,5 HP
En laborationskurs (U,G)
Organisation
Kursen består av föreläsningar, lektioner samt laborationer.
Litteratur
Böcker
Valbar
Ljung, L., Glad. T, (2004) Modellbygge och simulering andra upplaganStudentlitteratur
Kompendier
Valbar
Övningsuppgifter
Rekommenderade förkunskaper
Statistik, Reglerteknik. Grundläggande kunskaper i elektriska kretsar och mekanik i en dimension (translatorisk och roterande). Förkunskaper i stationära stokastiska processer underlättar, men är inte ett krav då de kort repeteras under kursen.
Kommentarer
Logga in för att kunna läsa och skriva kommentarer. |